

At St Michael's we are using the 'White Rose Hub' format as a basis for our planning. We are not following it completely but use it as a tool. We are using the White Rose Hub philosophy of:

- fluency using Learning Objectives from the National Curriculum
- reasoning
- problem-solving

In all our maths work we are using a CPA approach within our maths lessons (CPA - Concrete/ Pictorial/ Abstract)

We are using resources such as - White Rose, I See maths, NCETM Mastery documents & nrich problems.

The aim is that when children leave St Michael's they:

- Have a secure knowledge of number facts and a good understanding of the four calculation operations (addition, subtraction, multiplication and division)
- Make use of jottings, diagrams and informal notes to help record steps and part answers when using mental methods that generate more information than can be kept in their heads
- Have an efficient, reliable, written method of calculation for each operation that they are able to apply with confidence when they are unable to perform a calculation mentally

Maths Mastery

At the centre of the mastery approach to the teaching of maths is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used across the school, which is in line with the requirements of the 2014 Primary National Curriculum.

Mathematical Language

The 2014 National Curriculum is explicit in articulating the importance of children using the correct mathematical language as a central part of their learning (reasoning). In certain year groups, the non-statutory guidance highlights the requirement for children to extend their language around certain concepts. It is therefore essential that teaching using the strategies outlined in this policy is accompanied by the use of appropriate and precise mathematical vocabulary. New vocabulary should be introduced in a suitable context (for example, with relevant, real objects, apparatus, pictures of diagrams) and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is correct

This policy has been designed to teach children through the use of concrete, pictorial and abstract methods. This calculation policy should be used to support children to develop a deep understanding of number and calculation.

Using the Concrete-Pictorial-Abstract Approach:

Children develop an understanding of a mathematical concept through the three steps of: concrete, pictorial and abstract approach. Reinforcement is achieved by going back and forth between these representations.

Concrete Representation:

This is the first step in a child's learning. The child is introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and it is the foundation for conceptual understanding.

Pictorial Representation:

Once the child has sufficiently understood the 'hands on' experience, they can be progressed onto relating them to pictorial representations, such as a diagram or a picture of the problem.

Abstract Representation:

This is the third step in a child's learning. The child should now be capable of representing problems by using mathematical notation, for example: $12 \div 2 = 6$

ADDITION

Objective & Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model.	Use part- part Use part- part whole model. Use cubes to add two numbers together as a group or in a bar.	3 Joint Joi	4 + 3 = 7 10 = 6 + 4 Use the part-part whole diagram as shown above to move into the abstract
Starting at the bigger number and counting on.	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	12 + 5 = 17 $(+ + + + + + + + + + + + + + + + + + +$	12 + 5 = 17 Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10.	6 + 5 = 11 Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. 3+9= Use pictures or a number line. Regroup or partition the smaller number to make 10. 9+5=14 14	7 + 4 = 11 "If I am at seven, how many more do I need to make 10? How many more do I add on now?"
Represent & use number bonds and related subtraction facts within 20.	2 more than 5.	С С С С С С С С С С С С С С	Emphasis should be on the language: <i>"1 more than 5 is equal to 6"</i> <i>"2 more than 5 is 7"</i> <i>"8 is 3 more than 5"</i>

Objective & Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten.	50 = 30 + 20	3 tors + 5 tors = tors 30 + 50 =	20 + 30 = 50 70 = 50 + 20 $40 + _ = 60$
	Model using dienes and bead <u>stri</u> ngs.	Use representations for base ten.	40 • 00
Use known number facts including different combinations of tens & ones of any 2 digit number. (Part part whole)	20 Thildren explore ways of making numbers.	20 + = 20 20 - = = + = 20 20 - = =	Include teaching of the inverse of addition and subtraction: $\begin{array}{c} \hline \\ +1 = 16 \\ 1+ \hline \\ = 16 \\ 16 - \hline \\ = 1 \\ \end{array}$
Use known facts.			3 + 4 = 7
USE MIDWIT JULIS.		$\begin{array}{l} (1 + 1) = 1 \\ (1 + 1) = 1 \\ \end{array}$	Leads to
		• + • • = •	30 + 40 = 70
		Children draw representations of H, T & O.	300 + 400 = 700

Use bar models.	3 + 4 = 7	222222 2 2 2	23 25
Add a two digit number and ones.	17 + 5 = 22 Use ten frame to make 'magic ten'. Children explore the patterns: $17 + 5 = 22$ $27 + 5 = 32$	7 + 3 = 10 $17 + 5 = 22$ Use part part whole and number line to model. $16 + 7$ $16 = 20$ 20	23 + 25 = 48 $17 + 5 = 22$ Explore related facts: $17 + 5 = 22$ $5 + 17 = 22$ $22 - 17 = 5$ $22 - 5 = 17$ 22
Add 2 digit numbers and tens.	25 + 10 = 35 Explore that the ones digit does not change.	27 + 30 +10 +10 +10 27 37 47 57	27 + 10 = 37 27 + 20 = 47 27 += 57
Add two 2-digit numbers.	Model using dienes, place value counters and numicon.	+20 +6 Or +20 +3 +2 47 67 72 47 67 70 $72Use number line and bridge ten using part whole if necessary.$	25 + 47 $20 + 5$ $40 + 7$ $20 + 40 = 60$ $5 + 7 = 12$ $60 + 12 = 72$

Add three 1-digit numbers.	$\begin{array}{c} 4+7+6=17\\ \text{Put 4 and 6 together to make 10.}\\ \text{Add on 7.}\\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline $
Rapid Recall (addition and subtraction)	 Bonds within 10 Bonds within 20 Bonds to 100 (multiples of 10) Add single-digit to make a multiple of 10 Add near doubles. Reorder Count on/back in 10s

Objective & Strategy	Concrete	Pictorial	Abstract
Column Addition – no regrouping (friendly numbers) Add 2 or 3 digit numbers.	24 + 15 =	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. T O 0 0 0 0 0 0 0 0 0	Add the ones first, then the tens, then the hundreds: $2 2 3$ + 1 1 4 3 3 7 Children use the 'steps to success' to format their calculation: Steps for Success' 1. Wite your calculation, take your digits and circle the operation. 2. Child your operation, take your digits and circle the operation. 2. Child your operation, take your digits and circle the operation. 3. Use the method to calculate the answer 4. Write the prover at the only of the calculation.
Column Addition – with regrouping.	Make both numbers on a place value grid.	Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding.	Children follow the 'Steps to Success' to regroup and form the calculation correctly: $\begin{array}{c} 1 & 5 & 3 \\ + & 3_1 & 6 & 2 \\ \hline 5 & 1 & 5 \end{array}$ Don't forget, if you pass hundred, save it above the line and add it on later

Objective & Strategy		Concrete			Pic	toria l		Abstract
<u>Year 4</u> Add numbers with up to 4 digits			Draw representations using place value grid.			g place value	Continue from previous work to carry hundreds as well as tens.	
4 uigus			•	::		::	Relate to money and measures.	
	Hundreds	Tens	Ones		::	•	***	
			00000	-	•	-	••	4 2 2 2
		7	1	5	1	+ 51 71 9 1		
				•		1 0 0 1 3		
<u>Year 4</u> Rapid Recall (addition and subtraction)	• Doubl	'differences – m es – within 100 ubtract multiples)		<		 Bridgiu 	difference 🔍)

<u>Year 5</u> Id numbers with more	(As year 4)	(As year 4)	(As year 4)
an 4 digits.	Introduce decimal place value counters and model exchange for addition.	2.37 + 81.79 tens ones tents hundred the	1 4 0 1 . 2
dd decimals with 2 ecimal places, cluding money.	tens ones tenths hundredths		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
cuturing monteg.			1 5 3 8 . 7

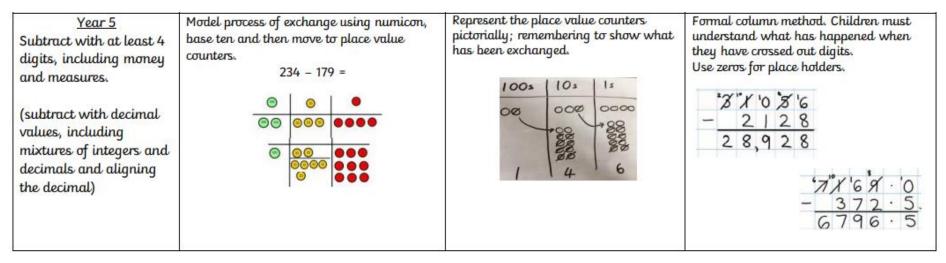
Year 6	(As year 5)	(As year 5)	Insert zeros for place holders.
Add several numbers of increasing complexity.	Introduce decimal place value counters and model exchange for addition.	2.37 + 81.79	23.361
Include adding money, measure and decimals	tens ones tenths hundredths	on too loog	9.080
with different numbers	tens ones tenths hundredths	00000 0 0000 0 0000	59.770
of decimal points.		00 00 000	+ 1.300.
		6	

SUBTRACTION

Objective & Strategy	Concrete	Pictorial	Abstract
Taking away ones from a whole.	Use physical objects, counters, cubes etc. to show how objects can be taken away. 4-3=1	Cross out drawn objects to show how many has been taken away. The bar model can also be used.	4-3= $-4-3$ 4 3 7 4 7 4 3 7 3
Counting back.	Counting back (using number lines or number tracks) children start with 6 and count back 2. 6 - 2 = 4 1 2 3 4 5 6 7 8 9 10	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line. 1 + 1 + 1 + 1 + 1 + 1 + 1 = 0 0 + 2 + 3 + 5 + 6 + 7 + 8 + 10

Finding the difference.	Compare amounts and objects to find the difference. ^{8 goldfish}	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate. 000000(?)	Find the difference between 8 and 5. 8 – 5, the differences is Children to explore why 9 – 6 = 8 – 5 = 7 – 4 have the same difference.
Represent and use number bonds and related subtraction facts within 20. (Part part whole model)	Link to addition – use the PPW model to model the inverse. If 10 is the whole and 6 is one of the parts, what is the other part? 10 - 6 = 4	Use pictorial representations to show the parts.	Move to using numbers within the part whole model.

Objective & Strategy	Concrete	Pictorial	Abstract
Partitioning to subtract – without regrouping. (friendly numbers)	Use dienes to show how to partition the number when subtracting without regrouping. 34 - 13 = 21	Children draw representations of dienes and cross off. 43 - 21 = 22	43 – 21 = 22
Making ten. (crossing one ten, crossing more than one ten, crossing the hundreds)	Use a bead string to model counting to the next ten and the rest. 34 - 28 =	Use a number line to count on to the next ten and then the rest. 44 76 80 90 93 'counting on' to find 'difference'	93 – 76 = 17



Objective & Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping. (friendly numbers)	Column method using base ten.	Children to represent the base 10 pictorially. $ \begin{array}{c c} \hline 10s & 1s \\ \hline 1(; :::::::::::::::::::::::::::::::::$	Column method or children could count back 7. 4 8 - 7 4 1 Children use their 'Steps to Success' to format the question correctly: Steps for Success' 1. Write your calculation, table your digits and circle the operation. 2. Calculation, table your digits and circle the operation. 3. Use the method to calculate the answer. 4. Write the answer at the end of the calculation.
Column subtraction with regrouping.	Column method using base 10 and having to exchange. 41 - 26 = 10s 1s 10s 1s 10s 1s 1 5	Represent the place value counters pictorially; remembering to show what has been exchanged. 100s 10s 1s 000 000 0000	Formal column method using 'Steps to Success'. Children must understand what has happened when they have crossed $\operatorname{out}_{H} \operatorname{T} O$ $\operatorname{T} O$ $\operatorname{H} \operatorname{T} O$ digits. 1 6 2 \odot 2 7 = 1 3 5 $\operatorname{H} \operatorname{T} O$ Start in your ones. If you can't do i, exchange 10 or 100 across. \circ 2 7 1 3 5 Remember to keep your exchanges small and tidy so you don't get confused!

Objective & Strategy	Concrete			Pictorial			ı	Abstract		
<u>Year 4</u> Subtracting tens and ones – up to 4 digits.	Model process of exchange using numicon, base ten and then move to place value			Represent the place value counters pictorially; remembering to show what has been exchanged.				Formal column method. Children must understand what has happened when they have crossed out digits.		
	2	34 - 17	9 =	1	003	105	15	6		
(introduce decimal	☺ ⊚ ●		•	00	000	0000	2 7 5 4			
subtraction through context of money)	00	000			-	CONSIGNATION OF CONSIGNATION O	1000000	-1562		
	0	00	000	1	1 4	6	1192			

<u>Year 6</u> Subtract with increasingly large,	Model process of exchange using numicon, base ten and then move to place value counters.			Represent the place value counters pictorially; remembering to show what has been exchanged.				Increasingly large and more complex numbers. X*S D, 6 9 9	
more complex, numbers	2	234 - 179) =	100	03	105	15	- 89.949	
and decimal values.	0	0	•	00		000	0000	60,750	
		1000 1000 1000 1000 1000 1000 1000 100	1 00000 to 0000	1/10 ·5 · 3/4 ·1 9 h					
	0	00 0000 0	••• ••• •••	1	4	6	$ \begin{array}{c} - 36 \cdot 080 \\ 69 \cdot 339 \\ 49 \end{array} $		

Multiplication

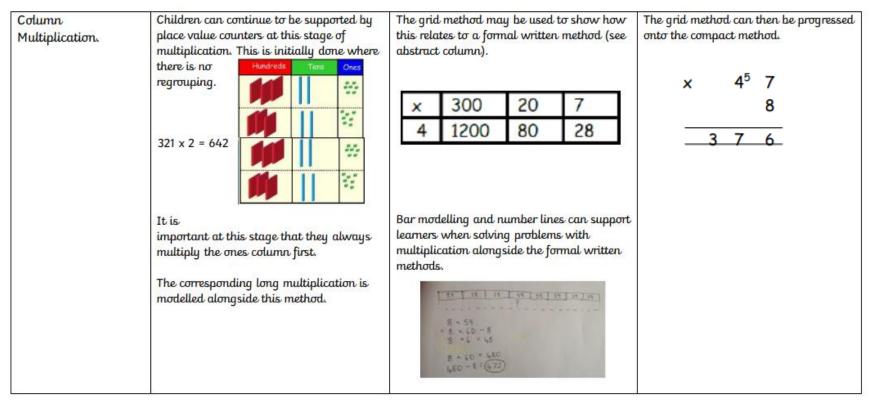
Objective & Strategy	Concrete	Pictorial	Abstract
Doubling numbers.	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling.	Draw pictures to show how to double numbers.	Partition a number and then double each part before recombining it back together.
	$double 4 is 8 \\ 4 \times 2 = 8$	Double 4 is 8	$ \begin{array}{c} 16 \\ 10 \\ x_2 \\ 20 \\ + 12 \\ = 32 \end{array} $
Counting in multiples.	Count the group as children are skip counting, children may use their fingers to help.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10
			5, 10, 15, 20, 25, 30

Repeated grouping/repeated addition.	3 x 4 = 4 + 4 + 4 = There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12
Understanding	Use objects laid out in arrays to find the answers to 2 lots of 5, 3 lots of 2s.	Draw representations of arrays to	3 x 2 = 6
arrays.		demonstrate understanding.	2 x 5 = 10

Objective & Strategy	Concrete	Pictoria l	Abstract
Doubling numbers.	Model doubling using dienes and place value counters. Doubling 26	Draw pictures and representations to demonstrate how to double numbers	Partition a number and then double each part before recombining it back together. 16 10 12
Counting in multiples of 2, 5 and 10 from 0. (repeated addition)	Count the groups as children are skip. counting, children may use their fingers to help. Progress onto bar models. 5 + 5 + 5 + 5 + 5 + 5 + 5 = 40	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 0, 2, 4, 6, 8, 10 0, 3, 6, 9, 12, 15 0, 5, 10, 15, 20, 25, 30 $4 \ge 3 = -$

Multiplication is commutative.	Create arrays using counters, cubes and numicon.	Use representations of arrays to show different calculations and explore commutativity.	$12 = 3 \times 4$ $12 = 4 \times 3$ Use an array to write multiplication sentences and reinforce repeated addition. $5 + 5 + 5 = 15$ $3 + 3 + 3 + 3 + 3 = 15$ $5 \times 3 = 15$ $3 \times 5 = 15$
Using the inverse. (this should be taught alongside division, so pupils learn how the two operations work alongside each other)		$\begin{vmatrix} 4 & 2 \\ \hline \times & = \\ \hline \times & = \\ \hline \times & = \\ \hline \div & = \\ \hline \div & = \\ \hline \div & = \\ \end{vmatrix}$	2 $x 4 = 8$ 4 $x 2 = 8$ 8 $\div 2 = 4$ 8 $\div 4 = 2$ 8 $= 2 x 4$ 8 $= 4 x 2$ 2 $= 8 \div 4$ 4 $= 8 \div 2$ Show all 8 related fact family sentences.

Objective & Strategy	Concrete	Pictorial		Abstract	t	
	Show the links with arrays to first introduce the grid method.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colour to	Begin with multiplying by one digit numbers and showing the clear addition alongside.			
	of3	show different amounts or just use the	×	30	5	
	Move onto base ten to move towards a	circles in the different columns to show their	7	210	35	
	A rows of 13 Move onto place value counters to show how we are finding groups of a number. We are multiplying by 4, so we need 4 rows	thinking. $24 \times 3 = 72$ $20 4$ $3 00$ 000 000 12 4 Here used to explore missing	210 + 35 = 245 Moving forward, multiply by a 2 di number, showing the different rows within the grid method.		y by a 2 digit ferent rows	
		numbers. $4 \times $ = 20	10	100	80	
	Fill each row with 126	20	3	30	24	



Objective & Strategy	Concrete	Pictorial	Abstract
The grid method	Use place value counters to show how	Children can represent their work with place	Multiply 3 digit by 1 digit numbers
(recap from Year 3 for	we are finding groups of a number.	value counters in a way that they	using the grid method.
2 digit x 1 digit).	We are multiplying by 4 so we need 4	understand.	
		They can draw the counters using colour to	
Children progress to		show different amounts or just use the circles in the different columns to show their	x 300 20 7
multiplying 3 digit		thinking.	4 1200 80 28
numbers by 1 digit	Fill each row with 126.		4 1200 00 20
(Year 4 expectation).	e 🤨 🛡	$24 \times 3 = 72$	1200 + 80 + 28 = 1,308
		× 20 4	
		3 00 0000	
	- O - O - O - O - O - O - O - O - O - O	00 0000	
	Add up each column, starting with the ones making any exchanges needed.	60 + 52	

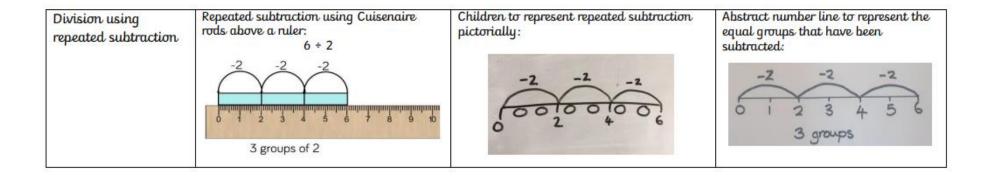
Objective & Strategy	Concrete	Pictorial	Abstract
Column Multiplication (3 and 4 digits x 1 digit).	Children can continue to be supported by place value counters at this stage of multiplication. This is initially done where there is no regrouping.	The grid method may be used to show how this relates to a formal written method (see abstract column).	The grid method can then be progressed onto the compact method.
	Hundreds Tens Ones Image: Second sec	x300207412008028	
Column Multiplication – Long multiplication.		108101008033024Continue to use bar modelling to support problem solving.	Progress to using the column method for long multiplication. $ \begin{array}{c} $

Rapid Recall (multiplication and division	 Square numbers to 144 Establish whether a number is prime Recall all prime numbers up to 19 	Strategies • X by 9 • X/+ by 10/100/1000 - including decimals • Use what you know to • x/+ by 5/50/25 • x by $\frac{1}{2}$ • Use factor pairs - 24/x 16

Objective & Strategy	Concrete	Pictorial	Abstract
Column Multiplication – Long multiplication.		108101008033024Continue to use bar modelling to support problem solving.	Progress to using the column method for long multiplication. 888 $\times \frac{72}{1776}$ 621,60 63936
Multiplying decimals up to 2 decimal places by a single digit.			Remind children that the single digit belongs in the ones column. Line up the decimal points in the question and answer. $\begin{array}{cccccccccccccccccccccccccccccccccccc$

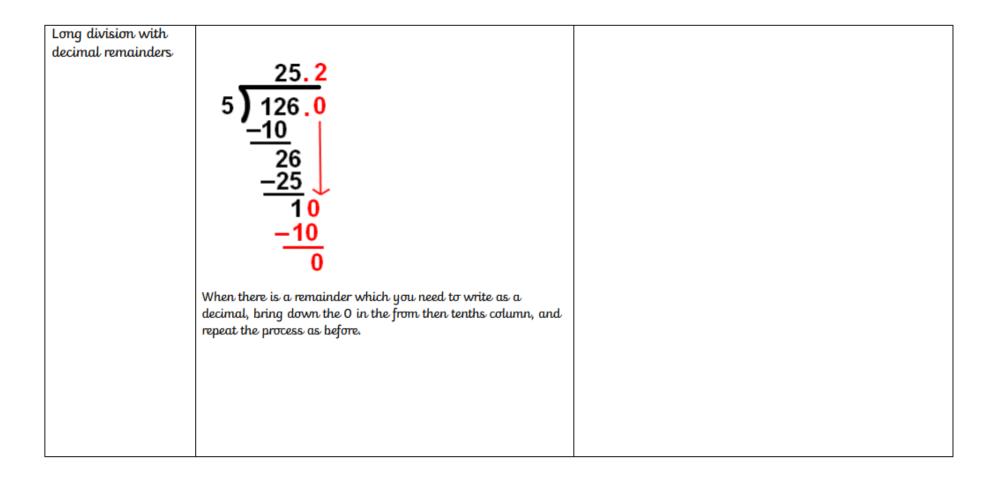
	When appropriate, children can use their place value knowledge to make the number being multiplied 10, 100 or 1000 times bigger and then multiply and make the answer 10, 100 or 1000 times smaller.
	$x^{319(x100)}_{x \ 8}_{\overline{2552}(+100)} = 25.52$

Division



Objective & Strategy	Concrete	Pictorial	Abstract
Division as sharing	Sharing using a range of objects: 6 ÷ 2 =	Use pictures or shapes to share quantities:	Children continue with pictorial method until fully secure. Children should also be encouraged to use their 2 times tables facts.
		··· ·· ?	
		Sharing:	? To progress further, children can then be moved onto:
		12 shared between 3 is 4	'6 shared between 2 is 3'

Objective & Strategy	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them into 2 equal groups?	Children use pictures or shapes to share quantities: 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	12 ÷ 3 = 4
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping: $3^3 + 3^3 + 3^3 + 3^3$ 0 + 2 + 5 + 5 + 7 + 5 + 10 + 11 + 12 0 + 2 + 5 + 7 + 5 + 10 + 11 + 12 0 + 5 + 7 + 20 20 + 5 = 7 5 + 7 + 20	28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group?


Objective & Strategy	Concrete	Pictorial	Abstract
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created: $15 + 3 = 5 - 5 \times 3 = 15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences: 0 0 0 0 0 0 0 $15 + 3 = 5 5 \times 3 = 15$	Find the inverse of multiplication and division sentences by creating eight linking number sentences: $7 \times 4 = 28 \ 4 \ \times 7 = 28$ $28 \ + 7 = 4 \ 28 \ + 4 = 7$ $28 = 7 \ \times 4 \ 28 = 4 \ \times 7$ $4 = 28 \ + 7 \ 7 = 28 \ + 4$
Division with	15 + 5 = 3 3 x 5 = 15 This can be done with lollipop sticks or Cuisenaire rods:	$15 + 5 = 3 + 3 \times 5 = 15$ $15 + 5 = 3 + 3 \times 5 = 15$ Children to represent the lollipop sticks pictorially:	13 ÷ 4 = 3 remainder 1
	13 ÷ 4 Use of lollipop sticks to form wholes- squares are made because we are dividing by 4. There are 3 whole squares, with 1 left over.	There are 3 whole squares, with 1 left over.	Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line: 4 - 4 - 4 - 4 5 - 9 - 13 '3 groups of 4, with 1 left over'

Year 4-6

Long division with		
remainder		
remainaer	Begin by modelling method with a 1-digit divisor. Write out the first 5 multiples (if needed continue). Image: State of the closest number- Image: State of the close of the number- Image: State of the close of the number of the close of the close of the number of the close of the number of the close of the	 Divide- Put the number in the bus stop. Multiples- Write down the first 5 multiples Find the closest number- Look at the multiples and find the closest number. How many times- Count the multiples and add the number on top of the bus stop. Subtract Bring down the next number

